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Abstract. The stationary state of a stochastic process on a ring can be expressed using traces of
monomials of an associative algebra defined by quadratic relations. We consider only exclusion
processes and restrict the type of algebras such that one has recurrence relations for traces
of words of different lengths. This is possible only if the rates satisfy certain compatibility
conditions. These conditions are derived and explicit representations of the generators of the
quadratic algebras are given.

1. Introduction

In a previous paper [1] we considered the application of quadratic algebras to stochastic
problems with closed or open boundaries. Here we study the case of periodic boundary
conditions. We are again interested in the (unnormalized) probability distributions describing
stationary states. In the language of quantum chains, we seek ground states which have zero
momentum and energy. Much work has already been done in seeking matrix-product states
in the case of periodic chains [2–4]. In the language of [1] in these papers polynomial
algebras which have a trace operation were used. (Polynomial algebras are quadratic
algebras without linear terms in the generators). In the present paper we consider a more
general case in which the ground-state wavefunction can be written using quadratic algebras
with linear terms. The idea of this approach is not new [5, 6]; all we have done is to pursue
it in a consistent way in the case of models with three states. As a result one finds more
solutions than were known previously, which can be used either to repeat the previous
applications [5, 6] in a more general framework, or to look for novel applications. The
same approach can be extended to problems with more states. Such an extension is not
trivial.

From a mathematical point of view one has to solve a well stated problem: given a
certain class of quadratic algebras one has to find those which are compatible with the trace
operation. One lesson to be learned from the present work is that, unexpectedly, in order
to solve the periodic case one makes use of Fock representations, derived in the previous
paper [1], where the matrix product ansatz was applied to solve the problem with closed or
open boundaries.

We first consider the general case ofN species on a ring withL sites and use the
notation of [1]. On each site we take a stochastic variableβk (β = 0, 1, . . . , N − 1 and
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k = 1, 2, . . . , L), on each linkk between the sitesk and k + 1 the rates0γkγk+1
βkβk+1

give the
probability per unit time for the transition:

{. . . , γk, γk+1, . . .} 7→ {. . . , βk, βk+1, . . .}. (1.1)

The Hamiltonian associated with the master equation [1] is

H = −
L∑
k=1

0
αβ

γ δ E
γα

k E
δβ

k+1 (1.2)

where the matricesEk act on thekth site and have matrix elements(
Eαβ

)
γ δ
= δαγ δβδ (1.3)

and the diagonal elements0αβαβ are given by∑
(γ,δ)

0
αβ

γ δ = 0. (1.4)

The siteL+ 1 is identified with the first site.
Now it is trivial to show that if we takeN matricesDα (α = 0, 1, . . . , N − 1) andN

matricesXα satisfying the quadratic algebra
N−1∑
α,β=0

0
αβ

γ δ Dα Dβ = Xγ Dδ −Dγ Xδ (γ, δ = 0, 1, . . . , N − 1) (1.5)

then

Ps = Tr

( L∏
k=1

(N−1∑
k=0

Dαku
(k)
αk

))
(1.6)

is a stationary state:

H · Ps = 0. (1.7)

We have denoted byu(k)α (α = 0, 1, . . . , N −1 andk = 1, 2, . . . , L) the basis vectors in the
vector space associated with thekth site on which the basis matricesEα,βk of equation (1.2)
act. The trace operation in (1.6) is taken in the auxiliary space of theDα andXα matrices.
We note that the bulk algebra (1.5) is identical to that encountered in the previous paper.
What is new here is the appearance of the trace operation in (1.6).

Let us observe that if one is interested only in one-dimensional representations of the
algebra (1.5) (the matricesD are c-numbers), instead of the matricesX one takes c-numbers
x, and one is left with a simple system of quadratic equations. In order to have solutions
one obtains constraints on the rates gamma (this is a simple way to obtain, for example, the
results of [7]; for other examples, see section 2).

In contrast to the problem with closed and open boundaries where the bulk algebra
was completed by the condition of the existence of a Fock representation defined by the
boundary conditions and where it was shown thatD andX matrices can be derived once
the bulk and boundary rates are given [8], in the present case very little is known, except
that the bulk algebra exists, since a representation for theD’s andX’s is known [8]. This
representation, however, is pathological in that the traces of any monomial ofD’s vanish.
It is also not clear if all stationary states can be obtained through the ansatz (1.5).

The remarkable thing about the algebras (1.5) is that, if the ground state (1.6) is unique,
all the traces of monomials of degreeL and containing onlyDα ’s and noXα ’s are, up to
a common factor, independent of the representation of the algebra, which implies that in
order to compute them one can take the smallest one.
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Last but not least, let us observe that the cases (see for example [4]) where the matrix
product ansatz was applied correspond to representations withXα = 0. This leads us to
polynomial algebras like those in [1, section 3].

We will now restrict our problem by looking only at simple exclusion processes. This
means that only the rates0αββα = gαβ and the diagonal ones are non-zero. Also, we will
seek solutions in which theXα matrices are c-numbersxα. This last assumption will imply
conditions on the ratesgαβ . The quadratic algebras now have a simple form:

gαβ Dα Dβ − gβα Dβ Dα = xβ Dα − xα Dβ (α, β = 0, 1, . . . , N − 1). (1.8)

There areN(N − 1)/2 relations withN parametersxα andN generatorsDα.
The appearance ofN arbitrary parameters in the algebra can be understood in the

following way. The problem has aU(1)N−1 symmetry corresponding to the conservation
of the number of particles ofN − 1 species (the remaining species are the vacancies). The
ground state is highly degenerate. If one has a ring withL sites,Ps given by (1.6) has the
following formal expression:

Ps =
∑
nα

d0
n0d1

n1 · · · dN−1
nN−1 An0,n1,...,nN−1 (1.9)

where
N−1∑
α=0

nα = L. (1.10)

Thedα are arbitrary parameters andAn0,n1,...,nN−1 are vectors on whichH acts. In this way,
in each sector, the ground state can be identified in terms of the numbern0 of vacancies
and ni of particles of typei. That Ps is indeed of the form (1.9) can be seen from the
invariance of the algebra (1.8) under the transformation

Dα 7→ dα Dα xα 7→ dα xα. (1.11)

Let us stress once again that in order to obtain the expression (1.9) one can take any
representation of the algebra. We now turn our attention to the algebra (1.8).

What we need is not only to have associative algebras but also for the trace operation
to exist. Since the left-hand side of equation (1.8) is quadratic and the right-hand side is
linear in the generatorsDα, this implies recurrence relations between traces of monomials
and hence compatibility relations between the ratesgαβ . In order to solve this problem,
our strategy is as follows: we first consider monomials of a low degree (up to five),
obtain the compatibility relations and make sure that no new relations occur from higher-
degree monomials by finding a representation with finite traces for the algebra. Once we
have the algebra, one can carry out calculations for physical applications using either the
algebra directly followed by formal manipulations under the trace operation, or use the
representation. This procedure will be explained in detail in section 3 for the three-state
case. In section 2 we ask a simple question: what are the conditions on thegαβ for arbitrary
N such that one has one-dimensional representations? (One-dimensional representations
obviously have a trace.) Finally, in section 4 we present our conclusions.

2. One-dimensional representations

The simplest examples of the algebras defined by equation (1.8) which have a trace are
those in which one has one-dimensional representations. In order to find them, we take
Dα = dα, arbitrary non-zero c-numbers. It is convenient to introduce the notation

aαβ = gαβ − gβα. (2.1)
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Using equation (1.8) one obtains
xα

dα
− xβ
dβ
= aβα (α, β = 0, 1, . . . , N − 1). (2.2)

These equations determine the parametersxα once thedα are chosen. One obtains
(N − 1)(N − 2)/2 conditions on the rates:

a0α − a0β = aβα (α, β = 1, 2, . . . , N − 1) (2.3)

and the parametersxα are

xα = dα(a0α + x0/d0) (α = 1, 2, . . . , N − 1). (2.4)

Note that one of the parameters can be chosen at will. In equations (2.3) and (2.4) we have
singled outα = 0 as a matter of notational convenience.

The wavefunction (see equation (1.6)) is symmetric. This observation is interesting for
the following reason. In the case of simple exclusion processes, the Hamiltonian given
by equation (1.2) has aU(1)N−1 symmetry. As already discussed, this corresponds to
conservation of theN − 1 types of particles hopping between vacancies. The symmetric
wavefunction, however, corresponds to anSU(N) representation given by the Young tableau
with one row andL boxes (L is the number of sites), although the Hamiltonian does not have
this symmetry. From equation (2.3) we also see that forN = 2 one has one-dimensional
representations for any rates.

3. The three-state algebras

We will now study the algebras given by equation (1.8) forN = 3 in detail. In order to
find them, we will consider several cases.

3.1. x0, x1 andx2 non-zero

We define

Di = xi Ei (i = 1, 2, 3) (3.1)

and obtain the algebra

g01E0E1− g10E1E0 = E0− E1

g20E2E0− g02E0E2 = E2− E0

g12E1E2− g21E2E1 = E1− E2.

(3.2)

From writing the recurrence relations for monomials of degree two and three, the equations
giving Tr(E0E1E2) and Tr(E2E1E0) are consistent only if

a01− a02 = a21 (3.3)

or if

a12 (g10g20− g01g02)Tr(E0)+ a20 (g01g21− g10g12)Tr(E1)

+ a01 (g02g12− g20g21)Tr(E2) = 0. (3.4)

Equation (3.3) gives the condition for having a one-dimensional representation, see
equation (2.3). Equation (3.4), however, is new. We use equation (3.4) to express Tr(E0)

in terms of Tr(E1) and Tr(E2) and look at the equations for monomials of degree four. No
new conditions appear. (This implies that the ground states for chains of up to four sites
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can be obtained by this method.) For monomials of degree five, however, the consistency
conditions for positive rates give the result that the traces of all monomials of degree two
to four are zero. Since we went up to monomials of degree five one can guess what kind
of ‘dirty’ algebra was required (see also [9]). We looked without success for conditions on
the rates in order to find non-zero solutions. However, the equations are so cumbersome
that we cannot even be sure that we did not miss one.

We have sought finite-dimensional representations of the algebra insisting on the
positivity of the rates. In this way one can check part of the results obtained in
an independent way by looking at the recurrence relations (the existence of a finite-
dimensional representation implies supplementary conditions on the rates). We have looked
at representations of dimensions two, three and four. The result was negative. If, however,
we look at the purely algebraic problem of having an algebra with traces, we find, for
example, that the algebra (3.2) exists if

g10g01 = g20g02 g12 = −g21 = g20(g02− g01)

g01+ g20
. (3.5)

Note that this condition is incompatible with positivity of the rates. This algebra has a
two-dimensional representation:

E0 = 1

g20− g01

(
g01/g02 0

0 1

)
E1 = 1

g01− g02

(
1 0

−(g01
2+ g20

2)/λg20
2 g01/g20

)
E2 = 1

g02− g01

(
g01/g20 λ

0 1

)
.

(3.6)

Hereλ is an arbitrary parameter.

3.2. x0 = 0, x1 andx2 non-zero

We define

D1 = x1E1 D2 = x2E2 (3.7)

and the algebra (1.8) becomes

g01D0E1− g10E1D0 = D0

g02D0E2− g20E2D0 = D0

g12E1E2− g21E2E1 = E1− E2.

(3.8)

This algebra has a special structure in the sense that all the independent monomials inD0,
E0 andE2 can be organized in the following way:

P0, D0P1, D0
2P2, . . . (3.9)

where thePi are monomials inE1 and E2 alone. In the trace problem this will imply
a decoupling of the recurrence relations according to the power ofD0 appearing in the
monomials. In particular, for words withoutD0’s, we can takeD0 = 0 in (3.8) and are
left with theN = 2 algebra containingE1 andE2 for which we know that we have one-
dimensional representations, and thus in this sector the problem is solved. The problem is
of course to marry the last equation in (3.8) with the first two. The decoupling of the trace
problem in various sectors will also have an unexpected consequence in the representations
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of the algebra. The representations with a trace for words containingD0’s will not have a
trace for words not containing anyD0. So much for the structure of the algebra (3.8).

Going up to monomials of order three, the consistency relations obtained from
the equations giving Tr(D0E1E2) and Tr(E2E1D0) again give equation (3.3) (this is
compatible with (2.4) in which one can takex0 = 0) or

g01g02 = g10g20. (3.10)

We first assume

g01, g20, g10, g02 6= 0 (3.11)

and look at words of order four. One obtains two new conditions which, together with
equation (3.10), give

g10 = g02 g01 = g20 g21− g12 = g01− g10. (3.12)

We will now introduce the following notation:

q = g01

g10
= g20

g02
r = g21

g12
(3.13)

and

E1 = G1

g01− g10
E2 = G2

g10− g01
. (3.14)

Taking into account the conditions (3.11) on the rates, the new algebra is

q D0G1−G1D0 = (q − 1)D0

q G2D0−D0G2 = (q − 1)D0

r G2G1−G1G2 = (r − 1) (G1+G2).

(3.15)

At this point we are not going to look at words of order five or more, but will show that
a representation with a trace exits. Before we show this, let us first note that the algebra
(3.15) is invariant under the transformation

D0 7→ D0 G1 7→ G2 G2 7→ G1 q 7→ 1

q
r 7→ 1

r
(3.16)

and that one has the identities

qn D0
n G1−G1D0

n = (qn − 1)D0
n

qn G2D0
n −D0

n G2 = (qn − 1)D0
n.

(3.17)

Equations (3.16) and (3.17) allow us to find traces on some monomials if one knows some
others.

In order to show that a representation exists, we first write

G1 = 1−√r − 1A

G2 = 1+√r − 1B

D0 = d0(1+ (q − 1)N )

(3.18)

whered0 is an arbitrary parameter. Using equation (3.15) we obtain

AB − rBA = 1

AN − qNA = A
NB − qBN = B.

(3.19)
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The algebra (3.19) which contains anr-deformed harmonic oscillator (with generatorsA and
B) together withq-deformed actions of the number operatorN has a Fock representation
[1, 10]:

A|0〉 = 〈0|B = 0 B = AT (3.20)

whereAT is the transpose ofA:

A =


0 g1 0 0 · · ·
0 0 g2 0

0 0 0 g3

...
. . .

. . .

 N =


p1 0 0 · · ·
0 p2 0

0 0 p3

...
. . .

 (3.21)

and

gn
2 = {n}r pn = {n− 1}q {n}λ = λn − 1

λ− 1
. (3.22)

It is convenient to denote

G1 = 1+ F1 G2 = 1+ F2 D0 = d0 I(q). (3.23)

The matricesF1, F2 andI(q) have a simple form:

F1 =


0 −f1 0 0 · · ·
0 0 −f2 0

0 0 0 −f3

...
. . .

. . .

 F2 = −FT
1 I(q) =


e1 0 0 · · ·
0 e2 0

0 0 e3

...
. . .


(3.24)

where

fk
2 = rk − 1 ek = qk−1. (3.25)

Let us now note the following useful relations:

qI(q)F1 = F1I(q)

qF2I(q) = I(q)F2

(3.26)

and

F1F2 = 1− rI(r)
F2F1 = 1− I(r)

(3.27)

as well as

I(r)I(q) = I(rq) (3.28)

and

Tr I(λ) = 1

1− λ. (3.29)

The calculation of the trace of any monomial containing at least oneD0 proceeds as
follows. Using equation (3.24) one has to compute only traces containing an equal number
of the F1’s andF2’s together with theI(q)’s. We use the commutation relations (3.26)
to bring theI(q)’s together and ‘condense’ them into one using (3.28). Next we use
equation (3.27) in order to express products of theF1’s andF2’s in terms ofI(r)’s and
make them ‘condense’ together with theI(qn) obtained from, let us say,n I(q)’s. The
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final result is an expression which containsI ’s of various arguments, each one having a
trace given by (3.29). Thedi of (1.9) ared0, d1 = x1 and d2 = x2. This concludes our
discussion of the algebra with the conditions (3.12). The special caseq = r is already
known and was applied in [5].

We now return to (3.10) and consider the case

g01 = g20 = 0. (3.30)

We can find directly representations of the algebra in this case.
First we consider

µ ≡ g10

g21− g12
6= −1 ν ≡ g02

g21− g12
6= −1. (3.31)

We make a change of notation:

E1 = −G1

g10
E2 = G2

g02
(3.32)

and instead of the algebra (3.8) we obtain

G1D0 = D0

D0G2 = D0

g12G1G2− g21G2G1 = g02G1+ g10G2.

(3.33)

Similar to what we did in the case of the previous algebra (see equation (3.23)), we write

G1 = 1+ F1 G2 = 1+ F2 D0 = d0F0 (3.34)

and make the observation that the Fock representation of the following algebra [1, 10]:

AI(0) = 0

I(0)B = 0

ξ(AB − r BA) = A+ B + 1

A|0〉 = 〈0|B = 0

B = AT

(3.35)

is known

A =


a1 k1 0 0 · · ·
0 a2 k2 0

0 0 a3 k3

...
. . .

. . .

 (3.36)

where

an = 1

ξ

rn−1− 1

r − 1
kn

2 = 1

ξ2

rn − 1

r − 1

(
ξ + r

n−1− 1

r − 1

)
(3.37)

andI(q = 0) as in (3.24). We have introduced the following notation for the ratios of the
rates:

r = g21

g12
ξ = µ+ ν + 1

(µ+ 1)(ν + 1)
. (3.38)
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Using equations (3.35)–(3.37) we find a representation forF0, F1 andF2 of (3.34):

F0 = I(0)
F1 = (µ+ 1)(I(r)+ V − 1)

F2 = (ν + 1)(I(r)+ VT − 1)

(3.39)

whereI(r) is defined as above and

V =


0 s1 0 0 · · ·
0 0 s2 0

0 0 0 s3
...

. . .
. . .

 (3.40)

with

sn
2 = (rn − 1)(ξ + rn−1− 1). (3.41)

Note that

rI(r)V = VI(r) (3.42)

and that the productsVVT andVTV can be written in terms ofI(r) andI(r2). This makes
the discussion of the existence and calculations of the traces identical to that for the previous
algebra. A special case of this algebra whenr = 0 has already been discussed in [5, 6].

For the caseµ = −1 one must use a different representation (the caseν = −1 is
similar). We write

E1 = 1

g10

(
1+ g02

g02− g10
A
)

E2 = − 1

g02

(
1+ g02− g10

g12
B
)

D0 = d0 I(0)

(3.43)

whereA andB now fulfill

AI(0) = 0

I(0)B = 0

AB − rBA = A+ 1

A|0〉 = 〈0|B = 0.

(3.44)

The matrices are given by

A =



0 f1 0 0 · · ·
0 0 f2 0

0 0 0 f3

0 0 0 0
. . .

...
. . .


B =



b1 0 0 0 · · ·
f1 b2 0 0

0 f2 b3 0

0 0 f3 b4

...
. . .

. . .

 (3.45)

with

bn = rn−1− 1

r − 1
fn

2 = rn − 1

r − 1
(3.46)

(cf equations (3.35)–(3.37)).
The profound reason which explains why the same representations for theEα occur

in the problem with periodic boundary conditions and for the open-ended problems (see
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[1, section 7]) comes from the following observation. The differences between the two
types of boundary conditions is that the parametersx1 and x2 are free for the periodic
case but are determined by the boundary matrices in the open case. In the latter case
supplementary relations exist between the bulk (gαβ) and boundary rates. Since theEα
found in the case of open ends have a trace, they can be used in the present paper.

3.3. x0 = x1 = 0, x2 non-zero

In this case the algebra (1.8) becomes

g02D0E2− g20E2D0 = D0

g12D1E2− g21E2D1 = D1

g01D0D1− g10D1D0 = 0

(3.47)

where we have takenD2 = x2E2. If one wants non-trivial ground states with particles of
the three species, one has to take

g01 = g10 = 0. (3.48)

In this case the symmetry of the problem is enormous, since no prescription is given in
terms of products ofD0’s andD1’s. The right language comprises affine symmetries [11]
and it is beyond the scope of this paper to get involved in the representation theory for this
case. The algebra with traces exists and its representations are known [12]. It has already
been used in [13] in the sector of oneD0 and oneD1. This model was also investigated in
[14] by different methods.

Finally, the casex0 = x1 = x2 = 0 brings us to the situation of symmetric rates where,
as we already know, we obtain a symmetric wavefunction.

4. Conclusion

For the three-species diffusion problem we have shown (see section 3) that if and only if
the ratesgαβ satisfy one of the conditions (3.3), (3.12), (3.30) or (3.48), the algebra (1.8)
has a representation with a finite trace. For the cases (3.3), (3.12), and (3.30) we give
these representations. For the case (3.48) the representation is also known [12]. Knowing
these representations and using (1.6) one can determine various correlation functions in the
stationary state. For a long chain this can be a very tedious calculation.

Leaving aside physical applications, our own fascination with the problem described in
this paper comes from the unusual properties of the representations of the algebra appearing
in searching for matrix-product ground states. As already stressed in the introduction, certain
monomials or even all monomials of the same degree in theD’s have, up to a normalization
factor, traces independent of the representation. More has to be understood in the general
case when theX’s are matrices (see equation (1.5)) and also in the class of algebras given
by equation (1.8). It is probably possible to encode the conditions on the ratesgαβ in some
cubic and quartic identities. This guess is based on the fact that conditions found on thegαβ
were obtained from words of degree three and four. For this reason the four-state problem
is worth looking at in order to see if a general pattern appears.
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